

Deni Lemgruber Queiroz

Influência da Convecção Natural no Resfriamento de Dutos Submarinos de Petróleo e Gás

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC-Rio.

Orientadora: Professora Angela Ourivio Nieckele

Rio de Janeiro Abril de 2007

Deni Lemgruber Queiroz

Influência da Convecção Natural no Resfriamento de Dutos Submarinos de Petróleo e Gás

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Profa. Angela Ourivio Nieckele Orientadora Pontifícia Universidade Católica do Rio de Janeiro

> Prof. Alcir de Faro Orlando Pontifícia Universidade Católica do Rio de Janeiro

Dr. Luis Fernando Gonçalves Pires Instituto de Pesquisa e Desenvolvimento - Ctex

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 17 de abril de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Deni Lemgruber Queiroz

Graduou-se em Engenharia Mecânica na PUC-RJ no ano de 2004.

Ficha Catalográfica

Queiroz, Deni Lemgruber

Influência da convecção natural no resfriamento de dutos submarinos de petróleo e gás / Deni Lemgruber Queiroz ; orientadora: Angela Ourivio Nieckele. – 2007.

122 f. : il. ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007. Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Linhas submarinas. 3. Resfriamento. 4. Convecção natural e mista. I. Nieckele, Ângela Ourivio. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

Agradecimentos

À Professora Angela, que desde os projetos realizados na graduação durante a iniciação científica me orientou de maneira dedicada acrescentando muito para minha formação, me ajudando sempre que foi preciso, passando assim parte do seu grande conhecimento.

Aos meus pais, Jairo e Leila, e minha irmã Luana, sem vocês nada disso seria possível, agradeço pelo incentivo constante, nas horas de paz e nos momentos difíceis.

À CAPES e ao CNPq pelo apoio financeiro à pesquisa.

Aos professores do Departamento de Engenharia Mecânica que forneceram conhecimentos importantes durante a graduação e o mestrado para realização da pesquisa.

Ao amigo Luiz Eduardo que forneceu grande ajuda com os problemas nas simulações utilizando o cluster.

À grande amiga Caroline que me deu grande e importante apoio moral durante toda a pesquisa.

Resumo

Queiroz, Deni Lemgruber, Nieckele, Angela, O. **Influência da Convecção Natural no Resfriamento de Dutos Submarinos de Petróleo e Gás.** Rio de Janeiro, 2007. 122p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

No processo de transporte e produção de petróleo e seus derivados em linhas submarinas, o controle da transferência de calor entre o produto quente e o mar frio, é fundamental para a garantia do escoamento. Se a temperatura do produto cair abaixo de determinados valores críticos, problemas como formação de hidratos ou deposição de parafina nas paredes da tubulação podem ocorrer, levando ao bloqueio da linha e interrupção de produção, demandando altos custos. A perda de calor para o ambiente é minimizada, através de isolantes térmicos projetados para operações em regime permanente. Nestes casos, devido às altas velocidades do escoamento axial, o qual é tipicamente turbulento, o processo de transferência de calor dominante é o de convecção forçada. Porém, durante uma operação de manutenção de algum equipamento, a produção pode ser interrompida e o fluido ficando parado no interior da linha, tende a resfriar-se podendo atingir uma temperatura crítica. Durante este resfriamento, na ausência de bombeio, o processo de convecção natural passa a dominar. O presente trabalho analisa o processo de transferência de calor após a parada de bombeio, considerando os efeitos da convecção natural no resfriamento do produto, assim como a influência da capacidade térmica da parede do duto e das camadas de revestimento no transiente térmico. Inicialmente, considera-se que o escoamento axial é rapidamente levado ao repouso e utiliza-se um modelo bidimensional da seção transversal do duto, utilizando três produtos típicos: um óleo leve, um óleo pesado, e um gás. Os campos de velocidade e temperatura são obtidos numericamente utilizando o software FLUENT, considerando a hipótese de Boussinesq para avaliar a convecção natural. A taxa de resfriamento obtida é comparada com a previsão de um modelo unidimensional na direção axial, que utiliza correlações empíricas para avaliar a transferência de calor entre o fluido e a parede da tubulação, em função do regime de escoamento. Boa concordância entre as simulações para a seção central da linha é obtida. No entanto, como as variações axiais para o caso do gás são maiores, para este produto, um modelo tridimensional também foi analisado, onde se considerou os efeitos combinados da convecção forçada e natural. Adicionalmente, a hipótese de Boussinesq foi eliminada, e a equação de gás ideal foi considerada.

Palavras-chave

Linhas submarinhas, resfriamento, convecção natural e mista.

Abstract

Queiroz, Deni Lemgruber, Nieckele, Angela, O. **Natural Convection Influence in the Cooldown of Oil and Gas Subsea Pipelines.** Rio de Janeiro, 2007. 122p. MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Heat transfer control is crucial for flow assurance in transport as well as production operations of oil and its derivatives in subsea lines. If the product temperature falls below certain critical values, problems such as hydrate formation or wax deposition in the pipelines walls can occur, inducing line blockage and interruption of production, demanding high costs. The heat loss to the environment is minimized by employing thermal insulation, which are designed for stead state operations. For these cases, due to high axial velocities, the flow is typically turbulent, and the dominant heat transfer mechanism is due to convection forced. However, during maintenance operation of some equipment, the production can be interrupted and the stagnant fluid in the interior of the line tends to cool down and it can reach a critical temperature. During this cooling, in the absence of pumps, the process of natural convection begins to dominate. The present work analyzes the heat transfer process after flow shutdown, considering the effect of the natural convection, as well as the influence in the thermal transient of the thermal capacity of the duct wall and insulation layers. Initially, it is considered that the axial flow is set to rest very quickly and a two-dimensional model of the transversal section of the duct is employed, using three typical products: light oil, heavy oil and pressurized gas. The velocity and temperature filed are obtained using the numerical software FLUENT, considering the hypothesis of Boussinesq to evaluate the natural convection. The cooling rate is compared with the forecast of a unidimensional model in the axial direction based on empirical correlations, function of the flow regime, to evaluate the heat transfer between the fluid and the duct wall. Good agreement is obtained between the solutions of the 2-D model and the pipeline central cross section of the 1-D model. However, as the axial variations for the gas case are significant, for this product, a three-dimensional model also was analyzed, where it was considered the effects of the forced and natural convection. Additionally, the hypothesis of Boussinesq was eliminated, and the ideal gas equation was considered.

Keywords

Subsea line, cooling, natural and mixed convection

Sumário

1. Introdução	21
1.1. Objetivo	25
1.2. Organização do Trabalho	25
2. Revisão Bibliográfica	27
2.1 Isolamento de Dutos Submarinos de Petróleo	27
2.2 Convecção	30
3. Modelagem Matemática	34
3.1. Modelo Bi-dimensional	37
3.2. Modelo Tri-dimensional	39
3.3. Condições de Contorno	41
3.4. Condições Iniciais	43
3.4.1 Caso 3-D	43
3.4.2 Caso 2-D	43
3.5. Parâmetros Adimensionais	45
3.6. Coeficientes Convectivos de Transferência de Calor	47
3.7. Método Numérico	48
4. Resfriamento de Óleo	49
4.1. Óleo Leve	50
4.1.1 Modelo 2D	51
4.1.2 Modelo 2D x Modelo 1D	63
4.2. Comparação Óleo Leve com Óleo Pesado	69

5. Resfriamento de Gás	74
5.1. Modelo 2D	75
5.2 Modelo 2D x Modelo 1D	84
6. Modelo 3D	89
6.1 Condição Inicial em Regime Permanente	91
6.2 Análise do Transiente após fechamento da Válvula	99
6.3 Comparação entre os Modelos 1-D, 2-D e 3-D	106
7. Comentários Finais	109
7.1. Recomendações para trabalhos futuros	110
Referências Bibliográficas	111
Apêndice A	117

Lista de tabelas

Tabela 4.1 Parâmetros geométricos da parede do duto	49
Tabela 4.2 Propriedades da parede do duto	49
Tabela 6.1 Velocidades e temperatura para cada instante de tempo	104
Tabela A1.1 – Distribuição da malha	117

Lista de figuras

Figura 1.1 – Arranjo típico. Dutos conectam as cabeças dos poços às plataformas	21
Figura 1.2 – Diagrama de fase e condições de formação de hidratos	22
Figura 1.3 – Retirada de hidrato de tubulações. (a) Hidrato no interior da linha (b) Pig com hidratos	23
Figura 1.4 – Parafina no interior do duto	24
Figura 2.1 – Arranjo Pipe-in-Pipe	28
Figura 2.2 – Arranjo Pipe-in-Pipe aquecido eletricamente	28
Figura 2.3 – Possíveis configurações de dutos submarinos enterrados: (a) meio enterrado (b) enterrado com enchimento (c) recoberto externo	29
Figura 2.4 – Configuração Bundle	30

Figura 3.1 – Esquema típico de produção	34
Figura 3.2 – Esquema utilizado na modelagem	34
Figura 3.3 – Seção transversal da tubulação	35
Figura 4.1 – Variação da temperatura de mistura do óleo leve com o tempo	51
Figura 4.2 – Isolinhas de temperatura para diferentes instantes de tempo: (a) 2 h; (b) 8 h; (c) 14 h	52
Figura 4.3 – Resfriamento no óleo, aço e isolante ao longo da linha de simetria	53
Figura 4.4 – Isolinhas de temperatura (em K) para diferentes instantes de tempo: (a) 2 h; (b) 8 h; (c) 14 h	53
Figura 4.5 – Resfriamento no óleo ao longo da linha de simetria para t=2h, t=8h e t=14h	54
Figura 4.6 – Variação angular da temperatura da parede interna, para diferentes instantes de tempo.	54
Figura 4.7 – Contornos das linhas de corrente para diferentes instantes de tempo: (a) 1 h; (b) 2 h; (c) 4 h; (c) 6 h; (d) 8 h; (e) 14 h	55
Figura 4.8 – Variação temporal da diferença entre a temperatura de mistura do óleo leve e da parede do aço	56
Figura 4.9 – Variação angular do fluxo de calor na parede interna, para diferentes instantes de tempo	57
Figura 4.10 – Taxa de Transferência de calor por unidade de comprimento para o óleo leve	57

59 Figura 4.11 – Variação da temperatura de mistura do óleo leve com o tempo Figura 4.12 – Variação do fluxo de calor com o tempo 60 Figura 4.13 – Variação do Nusselt com o tempo 61 Figura 4.14 – Variação do Grashof com o tempo 62 Figura 4.15 – Número de Nu versus número de Grashof 62 63 Figura 4.16 – Número de Nu* versus número de Gr* Figura 4.17 – Variação da temperatura de mistura ao longo do 65 duto para o óleo leve. Caso 1-D Figura 4.18 – Variação da temperatura de mistura com o tempo do 66 óleo leve Figura 4.19 – Variação do fluxo de calor com o tempo para o óleo 66 leve Figura 4.20 – Variação do Nusselt com o tempo para o óleo leve 67 Figura 4.21 – Variação do Grashof com o tempo para o óleo leve 68 Figura 4.22 – Comparação da variação da temperatura de mistura 70 dos óleos leve e pesado com o tempo Figura 4.23 – Contornos das linhas de corrente para t =2 h 70 Figura 4.24 – Variação dos fluxos de calor dos óleos com o tempo 71 Figura 4.25 – Variação das taxas de transferência de calor dos 72 óleos com o tempo Figura 4.26 – Variação do Nusselt para os óleos com o tempo 72 73 Figura 4.27 – Variação do Grashof para os óleos com o tempo

Figura 4.28 – Número de Nusselt versus número de Grashof	73
Figura 5.1 – Variação da temperatura de mistura do gás com o tempo	75
Figura 5.2 – Isolinhas de temperatura para diferentes instantes de tempo: (a) 2 h; (b) 6 h; (c) 10 h	76
Figura 5.3 – Isolinhas de temperatura (em K) para diferentes instantes de tempo: (a) 2 h; (b) 6 h; (c) 10 h	77
Figura 5.4 – Resfriamento no gás ao longo da linha de simetria para t=2h, t=6h e t=10h	77
Figura 5.5 – Variação angular da temperatura da parede interna, para diferentes instantes de tempo (a) t = 2 h (b) t = 6 h (c) t = 10 h	78
Figura 5.6 – Contornos das linhas de corrente para diferentes instantes de tempo(a) 2 h (b) 4 h (c) 6 h (d) 8 h (e) 10 h (f) 14 h	79
Figura 5.7 – Variação temporal da diferença entre a temperatura de mistura do gás e da parede do aço	80
Figura 5.8 – Variação do fluxo de calor com o tempo para o gás	81
Figura 5.9 – Taxa de Transferência de calor por unidade de comprimento para o gás	81
Figura 5.10 – Variação do Nusselt com o tempo para o gás	82
Figura 5.11 – Variação do Grashof com o tempo para o gás	83
Figura 5.12 – Número de Nusselt versus número de Grashof	83
Figura 5.13 – Variação da temperatura adimensional com o Fourier para o gás e óleo	84

Figura 5.14 – Variação da temperatura de mistura do gás ao longo do tempo	85
Figura 5.15 – Resfriamento ao longo do duto para o gás pressurizado, para diversos instantes de tempo. Modelo 1-D	85
Figura 5.16 – Comparação entre modelos 1-D e 2-D do resfriamento ao longo do tempo para o gás pressurizado	86
Figura 5.17 – Variação do fluxo de calor com o tempo para o gás	87
Figura 5.18 – Variação do número de Nusselt com o tempo para o gás	87
Figura 5.19 – Variação do número de Grashof com o tempo para o gás	88
Figura 6.1 – Malha na seção transversal e perspectiva	90
Figura 6.2 – Variação da pressão ao longo do duto	91
Figura 6.3 – Variação da velocidade axial ao longo do raio	92
Figura 6.4 – Elemento infinitesimal do duto	93
Figura 6.5 – Variação da temperatura adimensional do gás ao Iongo do duto	94
Figura 6.6 – Perfil axial da temperatura de mistura	94
Figura 6.7 – Variação do Nusselt ao longo do duto	95
Figura 6.8 – Perfil de temperatura no gás e na camada de aço ao Iongo do raio	96
Figura 6.9 – Perfil de temperatura na camada do isolante ao longo do raio	96

Figura 6.10 – Perfil de temperatura 2-D e 3-D nas camadas do duto ao longo do raio	97
Figura 6.11 – Perfil de viscosidade turbulenta ao longo do eixo central do duto	98
Figura 6.12 – Perfil de κ e ϵ ao longo do eixo central do duto	98
Figura 6.13 – Perfil de viscosidade turbulenta ao longo do eixo central do duto	99
Figura 6.14 – Perfil de κ e ϵ ao longo ao longo do raio do duto na seção central	99
Figura 6.15 – Variação da pressão ao longo do duto durante o fechamento	100
Figura 6.16 – Variação da velocidade axial ao longo do duto durante o fechamento	100
Figura 6.17 – Isotermas na seção transversal do duto para t=30 min em diferentes coordenadas axiais.	101
Figura 6.18 – Variação da temperatura ao longo do duto para 3 instantes de tempo	102
Figura 6.19 – Variação da temperatura do gás ao longo do raio para instantes de tempo t = 5, 20, 30 e 60 min.	102
Figura 6.20 – Variação da velocidade axial ao longo do raio	103
Figura 6.21 – Linhas de tinta na seção central do duto para instantes de tempo t = 30 min, 45 min, 1 hr e 1 h e 15 min.	104
Figura 6.22 – Variação da pressão ao longo do duto para instantes de tempo t = 5, 20, 30 e 60 min.	105

Figura 6.23 – Perfil de viscosidade turbulenta ao longo do eixo central do duto	105
Figura 6.24 – Perfil de κ e ϵ ao longo ao longo do raio do duto na seção central	106
Figura 6.25 – Variação da temperatura de mistura com o tempo	106
Figura 6.26 – Variação da diferença entre a temperatura de mistura e a temperatura da camada de aço com o tempo	107
Figura 6.27 – Variação da temperatura de mistura ao longo do duto	108
Figura 6.28 – Variação da temperatura de mistura ao longo do raio	108
Figura A1.1 – Malha na seção transversal	117
Figura A1.2 – Teste de malha. Variação da temperatura de mistura com o tempo	118
Figura A1.3 – Teste de malha. Variação do fluxo de calor com o tempo	119
Figura A1.4 – Erro médio percentual na variação do fluxo de calor com o tempo	121
Figura A1.5 – Teste de passo de tempo. Variação do fluxo de calor	122

com o tempo

Nomenclatura

- *A_T* Área da secção transversal da tubulação
- A_s Área interna de troca de calor da parede do duto
- *Bi* Número de Biot
- *c* Constante empírica do modelo turbulento
- *C* Constante do perfil de temperatura
- *c*_µ Constante empírica de Launder e Spalding
- *c*_{*p*} Calor específico à pressão constante
- D Diâmetro da tubulação
- $\vec{\nabla}$ Gradiente
- e Espessura
- E Energia
- ε Taxa de dissipação da energia cinética turbulenta
- \widehat{F} Forças externas
- f_{at} Fator de atrito
- Fo Fourier
- *g* Aceleração da gravidade
- G_b Termo associado ao empuxo
- Gr Número de Grashof
- Gr* Número de Grashof baseado na temperatura ambiente
- *h* Coeficiente de transferência de calor
- k Condutividade térmica
- κ Energia cinética turbulenta
- *L* Comprimento do duto
- *m* Vazão mássica
- Nu Número de Nusselt
- Nu* Número de Nusselt baseado na temperatura ambiente
- p Pressão

- *P* Pressão modificada
- P_{κ} Produção de energia cinética turbulenta
- Pout Pressão de saída
- Pr Número de Pradtl
- *P_s* Pressão a montante da válvula
- Q Taxa de transferência de calor
- q'' Fluxo de calor local
- \overline{q}'' Fluxo de calor médio
- r Coordenada radial
- R_{aco} Raio externo do duto
- Re Número de Reynolds
- Res_i Resistência térmica equivalente da parede do duto
- R_{in} Raio interno do duto
- R_{iso} Raio do isolante
- R Constante universal dos gases
- S Fonte
- t Tempo
- T Temperatura
- T_s Temperatura da parede
- *u* Velocidade do fluido
- *ū* Velocidade média no tempo
- \vec{u} Vetor velocidade média no tempo
- *u'* Flutuação da velocidade
- *u_m* Velocidade média do escoamento
- U Coeficiente global de troca térmica
- V_{∞} Velocidade da corrente externa
- W Peso molecular
- y Eixo de simetria
- z Coordenada axial

Símbolos gregos

- α Difusividade térmica
- β Coeficiente de expansão térmica
- σ_{ϵ} Número de Prandtl de taxa de dissipação
- σ_{κ} Número de Prandtl de energia cinética turbulenta
- Φ Temperatura adimensional
- ψ Linhas de corrente
- ρ Densidade / massa específica
- μ Viscosidade absoluta
- μ_{f} Viscosidade absoluta do fluido
- μ_m Viscosidade da película do fluido junto à parede
- μ_t Viscosidade turbulenta
- τ Tensão de cisalhamento
- θ Coordenada angular

Subscritos

- aço Camada de aço
- D Desenvolvido
- e Externo
- f Fluido
- in Interno
- iso Camada de isolante
- m Mistura
- out Saída
- r Radial
- ref Referência
- t Turbulento
- 0 Constante
- ∞ ambiente
- θ Angular

Sobrescritos

T Transposta